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STABILITY OF FREE-CONVECTION BOUNDARY-LAYER FLOWS

By Philip R. Nachtsheim

SUMMARY

The stability of free-convection boundary-layer flows is investigated by
numerical integration of the disturbance differential equations. Stability cal-
culations are carried out for Prandtl numbers of 0.733 (air) and 6.7 (water) with
and without temperature fluctuations. Results presented for these four cases
consist of eigenvalues (phase velocity, wave number, and Reynolds number), eigen-
functions, and energy distribution curves for neutrally stable disturbances.
Tabulations of the basic velocity and temperature profiles for a Prandtl number
of 6.7 are also included.

When temperature fluctuations are included, a mode of instability is found
in which the primary source of energy for the disturbance motion arises from the
interaction of buoyancy forces with velocity fluctuations. The present stability
results are compared with available theoretical and experimental results.

INTRODUCT'ION

It 1s well known that boundary-layer flows are unstable under certain con-
ditions in the sense that a small disturbance imposed on the basic flow can grow
indefinitely in time. This instability is related to the shearing motion of the
basic flow and existence of a mechanism for trensferring energy from the basic
flow to the disturbance motion via the Reynolds stress. It is also well known
that a static fluid in a gravitational field in which a constant temperature
gradient is maintained is unstable under certain conditions. This thermal in-
stability arises when the gravity vector has a component parallel to the tempera-
ture gradient. 1In this case a supply of energy for the disturbance flow comes
from the potential energy of the fluid particles in the static configuration.
Both of these stability problems have received extensive, but separate, treat-
ments in the literature.

The problem of the stability of free-convection boundary-layer flows is an
interesting combinatlon of the problems of boundary-layer stability and thermal
stability. Since the free-convection flow is & shearing motion, the problem of
its stability contains all the features of the boundary-layer stability problem.
However, when a temperature disturbance 1s imposed on the free-convection
boundary~layer flow, the essential feature of the thermal stability problem is
introduced, and there is a possibility of transferring energy to the disturbance
flow if there is a correlation between the disturbance velocity component along



the plate and the disturbance temperature gradient along the plate.

The determination of the stabillity characteristics of a given free-
convection boundary-layer flow requires the determination of the eigenvalues
occurring in a system of complex differential equations of sixth order. This
system of equations differs from the well-known Orr-Sommerfeld fourth-order
equation, which applies to ordinary boundary-layer flows in that the sixth-order
system takes account of the interraction of the gravity force with density fluc-
tuations.

The effect of temperature fluctuations has been neglected in all previous
investigations of the stability of free-convection boundary-layer flows. Refer-
ence 1 showed that the neglect of temperature fluctuations is Jjustified if the
Reynolds number is sufficiently large; however, the Reynolds numbers at which
finite disturbances have been observed experimentally in free-convection flows
are not extremely large numbers.

With the neglect of temperature fluctuations the disturbance differential
equation for free-convection boundary-layer flows reduces to the Orr~Sommerfeld
equation. The asymptotic techniques that were developed to solve the Orr-
Sommerfeld equation were used in references 1 and 2 to solve the free-convection

boundary-layer stability problem.

In asymptotic methods, the critical layer plays a central role in the anal-
ysis. The critical layer is located at that point in the boundary layer where
the phase velocity of an assumed disturbance wave matches the velocity of the
basic flow. For conventional velocity profiles, linearly independent solutions
of the Orr-Sommerfeld equation are often obtained in the form of expansions about
the critical layer. Since the velocity in the free-convection flow is zero at
the plate and at large distances from the plate, each value of velocity is at-
tained twice, once when the velocity i1s increasing and once when the velocity is
decreasing; hence, for these profiles there will be two critical layers or none.
In references 1 and 2, account is taken of the presence of two critical layers
by obtaining solutions to the differential equation by means of expansions about
each critical layer. However, minimum critical Reynolds numbers, that is, the
Reynolds numbers below which all disturbances should be damped, were obtained
that were greater than the Reynolds numbers at which finite disturbances were
observed experimentally (refs. 1 and 2).

In order to avold the problem of expanding solutions about two critical
layers, other investigators have used direct numerical methods to solve the Orr-
Sommerfeld equation. A numerical method to determine the stability characteris-
tics of a transverse velocity profile near the stagnation point of a sweptback
wing was developed in references 3 and 4. This method consists essentially of
using step-by-step integration to find two linearly independent solutions of the
differential equation that satisfy the boundary conditions at the wall. A suit-
able linear combination of these solutions is then sought by a trial-and-error
method in order to match the known free-stream solution at the edge of the bound-
ary layer. In reference 5, the method developed in reference 6 was applied to
determine the stability characteristics of a free-convection velocity profile
without temperature fluctuations., A minimum critical Reynolds number below the



Reynolds number at which finite disturbances were observed experimentally was
obtained in reference 5. However, none of these methods made use of any of the
analytic properties of the Orr-Sommerfeld differential equation in order to
simplify the numerical calculations.

In the present numerical method, use is made of the property of the dis-
turbance differential equations that solutions of the differential equations
depend analytically on the parameters appearing in the equations. This method
of solution, unlike the asymptotic methods, dces not rely on the existence of a
critical layer.

The basic idea of the present method is to integrate the differential equa-
tions by a step-by-step method for guessed values of the eigenvalues and start-
ing values as if they were nonlinear equations. The boundary-value problem is
treated as an initial value problem for which not all the proper starting values
are known so as to satisfy conditions at the other boundary. Equations involv-
ing the dependent variables are formulated and evaluated at the edge of boundary
layer so that the zeros of these equations indicate that the numerical solution
matches the known free-stream solution. The Newton-Raphson second-order process
is used to obtain corrections to the eigenvalues and the starting values in order
to satisfy boundary conditions. The iteration process is continued until the
boundary conditions are satisfied.

This general method outlined is described in reference 7. The purpose of
this report is to apply the method to the solution of the free-convection
boundary-layer stability differential equations and to show how the analytic
properties of the differential equations can be used to simplify the application
of the general method.

DISTURBANCE EQUATIONS AND THEIR SOLUTIONS
Disturbance FEquations

The disturbance equations for a parallel flow as glven in reference 1 are
as follows:

i ECLZCPH + 04@ + g' = icRe (F' - C)(CP” - QZCD) - F''eg (l>
©

s" - @Zs = iaRePr[ZF' - ¢)s - @ﬁ] (2)
(Symbols are defined in appendix A.)

Equations similar to these were also derived in reference 2 by means of a
different nondimensionalizing procedure. A brief derivation of equations (1)
and (2) is given in appendix B. The effect of the temperature fluctuations
appears in the function s, which couples equations (1) and (2). If s' is set
equal to zero, equation (1) reduces to the well-known Orr-Sommerfeld equation.
The boundary conditions for equations (1) and (2), in the case of an isothermal
plate, are



n=0 =9 =85=0 (3)
n—e o ¢, 8>0 (4)

The boundary condition that the temperature disturbance amplitude s van-
ishes at the surface is a reasonable one for metallic plates immersed in a fluid
such as air or water, where the plate materials are highly conductive compared

to the fluid.

Replacement of Boundary Conditions at Infinity

The boundary conditions at infinity can be replaced by different conditions,
which are to be satisfied at a finite distance from the plate. The new condi-
tlons are to be applied at the edge of the boundary layer at 17 = 7, where the
values of F', F"', and H' are nearly at their asymptotic values. For free-
convection profiles F', F'"', and H' approach zero at the edge of the boundary
layer; therefore, for 1 > 1, the coefficients in equations (1) and (2) can be
treated as constants, and equations (1) and (2) reduce to

vanx - 20 q)" + Q4Qp + 8! = —iCLReC(CD” - CLZ(P) <5>

s" - azs = -iaRecPrs (6)
The general solution of the system of equations (5) and (6) is
¢ = cy exp (an) + c, exp (-an) + c exp (Bn)

+c, exp (-pn) + c. exp (yn) + ¢, exp (-yn) (7)

S C e 2 2y..2 _ o2
s = _° —exp (yn) + cg (r® = o®) (= %) exp (-yn)  (8)
T Y
where ¢4, Coy, . . ., C are arbitrary constants and where B and 7y, respec-

tively, are the roots with positive real parts of

B% = a® - iaRec (9)

12 = % - iqRecPr (10)

The task remains of eliminating the arbitrary constants in equations (7)
and (8) in order to obtain a set of linear and homogeneous relations in the de-
pendent variables and thelr derivatives, which are to be satisfied at the edge
of the boundary layer. The elimination of the arbitrary constants is carried
out in appendix C, where it is shown that solutions of equations (1) and (2),
which decay exponentially as the distance from the plate increases indefinitely,
are characterized by three conditions that must be satisfied at the edge of the
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boundary layer, m = Nee These conditions are

st +y8 =0 (11)

Q" - achl 4 B((p" - CLZCP) + ?—‘{_B s =0 (12)
e t 2 1 T -

P + o - B7(9' + o) + 8 = 0 (13)

Solution of Eigenvalue Problem

The approach to the elgenvalue problem for fixed Pr wused herein is to fix
o« and Re and then to find velues of ¢ = c,. + icy (eigenvalues) for which
equations (1) and (2) have solutions (eigenfunctions) that satisfy the boundary
conditions (egs. (3) and (11) to (13)).

The elgenvalue c and the corresponding eigenfunctions are obtained by
treating equations (1) and (2) as if they were nonlinear equations. A trial
solution is obtained by step-by-step numerical integration of the differential
equations starting at 1 = O for assumed starting values and an assumed value
of c. Equations (11) to (13) are evaluated at the edge of the boundary layer.
If the boundary conditions are not satisfied, the starting values and c are
adjusted, and another trial is made. For the assumed values of the parameters,

denote the values taken on by the expressions on the left side of equations (11)
to (13) by

A =8' +7s (14)
Ay = 9= aPp + Blo" - o) T : B° (1)
A, = it "o 2( 4 ) + T s (16)
z = @7+ ap B (o P Y+ a

It is desired to find the eigenfunctions and the values of the parameters
that will simultanecusly cause Al’ AZ’ and A3 to take on the value zero. In

order to calculate Aj, As, and Az, starting values ¢(0), @'(0), ©"(0), "t (0),
s(0), and s'(0) have to be assigned as well as a value for c. The boundary
conditions at the plate are satisfied by taking ¢(0) = ¢! (0) = 8(0) = 0. Since
the differential equations (1) and (2) are linear and homogeneous and the bound-
ary conditions are homogeneous, it is permissible to take ¢"(0) equal to some
convenient fixed value. This value sets the magnitude of the linear oscillation.
The remaining unknown starting values, @' (0) and s’ (0), are denoted by a and
b, respectively.

Newton-Raphson method is used to obtain the zeros of equations (14) to (16).
If the chosen values &, b, and c¢ produce a solution o(n;a,b,c) and
s(n;a,b,c) that approximately satisfies equations (14) to (16), that is, actually



leads to values of A 17 Az, and A close to zero, then a better approximation

is obtained by startlng with a + Aa, b+ Ab, and c¢ + Ac Instead of a, b,
and ¢, where Aa, Ab, and Ac are obtained as solutions of

oA 0 )
_ 1 A A
0 —Al(a,b,c) +5a_Aa+ab_Ab+sc_Ac (17)

BAZ BAZ 8A2
0 = As(a,byc) + EEf'Aa + 55_.Ab + 56..&@ (18)
BAB A oA
_ 3 3
o_AS(a,b,c)+a_;Aa+%_Ab+5c_Ac (19)

The quantilties Al’ Ao, and AS and the partial derivatives evaluated at

= 7, can be determined by integrating the differential equations (1) and (2)
by & step-by-step method. The partial derivatives in equations (17) to (19) may
be given either by a finite difference approximation or from equations obtained
by partial differentiation of equations (1) and (2) with respect to a, b,
and c. (The coefficients of egs. (1) and (2) are analytic functions of 1n and
depend analytically on the parameters a, Re, and c. Therefore, the solutions
of egs. (1) and (2) have the same analytical properties and have the required
partial derivatives.) In the former method four integrations of equations (1)
and (2) are carried out, one with & basic set a, b, and c, and three more,
each with appropriate small increments on a, b, and c¢. Partial differentia-
tion gives the same information with one integration. However, in this second
method, three extra sets of differential equations have to be integrated.

The equatlions for the derivatives with respect to a are as follows:

e 2 1" | — r "o 2 - tre
P, @l + o cp + s' = 1aRe [(F c)(cpa a cpa) F cpa] (20)
1 2 . ' 1
s, - a's_ = laRePr BF - c)sa - @aH] (21)
with the initial conditions
n = 0 q)a = q)é = CP; = Sa = Sé‘ = 0 (Pé" = 1 (22)

The eguations for the derivatives with respect to b are as follows:

! 2 " - ' — 2 - 1"
cpb"' o + @ qo + 5 = iaRe [(F - c)(cpl’) a cpb) F 'qo] (23)

1" 2 — 1 - 1
sy ~ a’sy = iaRePr BF - c)sb @bH] (24)

with the initial conditions



n =0 P =R =@ = =8 =0 8l =1 (25)

and the equations for the derivatives wilth respect to c¢ are as follows:

QU - 2a2¢g + a%¢c + 8l = iaRe[KF' - ) (o - azmc) -F'g, - (" - @2¢ﬂ

(28)
1] 2 — | - — 1 -
s, - a8, = iaRePrl}F c)sc o ﬂ (27)
with the initial conditions
=0 = ="' =" =8 =g8! =0 (28)
n= P = P = P = P c c

In these equations the subscripts =8, b, and ¢ dencte partial differentia-
tion with respect to a = @"'(O), b = 8'(0), and ¢, respectively. TFor example,
g = (0/da)p(n;e,b,c) gives the rate of change of ¢ with respect to a with
b, ¢, and 7 held constant as a function of 7. The partial derivatives of the
A's appearing in equations (17) to (19) can now be evaluated. Note that the
boundary conditions (eqs. (14) to (16)) involve ¢, the eigenvalue, through the
intermediate varisbles B and Yy defined by equations (9) and (10). Utilizing
equations (14) to (16) results in

ggl = 8. + T8, (29)
gél = 8 + T8y (30)
Y (s2)
% = oy - oo, + o] - af,) + T : B ‘8 (22)
2—23= 9t - afo, + Bley - ap,) + Lz s,
ek [Wn - a%p) + “Z(P}; = 1) - < B)E} (34)
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S5 = G tow, - Biey vam) g s, (35)
Ohs 2 Y
W=%r1+ang-6(cp.é+acpb)+r+asb (36)

BAS 2 T aPr s
S =90 +agl - B (cpé + or,cpc) + 8, + iaRe [(cp’ + 20 - 2y 2] (37)

+ o
v (ry + )

For a given point (a,Re) in the o,Re-plane, the procedure outlined should con-
verge to an eigenvalue c.

Criterion for Convergence to an Eigenvalue

The procedure outlined previously for finding the eigenvalue for a given
point in the a,Re~plane was programed for solution by using complex arithmetic
on the IBM 7090 located at the Lewis Research Center. The numerical integration
was done with the Runge-Kutta method, which gives fourth-order accuracy. Con-
vergence to an eigenvalue was established by requiring that

[8)1% + 18] % + |85]% < 5x107° or requiring that |Aa|, |Ab|, snd |Ac| all be
less than or equal to 5x10-6.

The step size was externally controlled and set such that there was no sig-
nificant change in the eigenvalue when the example was rerun with a step size
equal to one-half of the original value.

In order to fix the size of the solution, the eigenfunctions were normalized
after each integration so that ¢ was set equal to unity at the edge of the
boundary layer.

The effect on the results of the choice of the value of 71 for the end of
the range of Integration was examined. For alr Mg Was taken to be 6, and for
water n_ was taken to be 5. Variations of Me from these values for both
cases produced little or no changes in the values of the eigenvalues. As a
matter of fact, 7 was taken to be 3 for exploratory runs that resulted in good
approximations to the eigenvalues.

Determination of Neutral Curve

The results of the stability analysis are usually displayed in an a,Re-
diagram on which the curve ¢4 = 0 1is drawn. On this curve Re can be consid-
ered a function of . The minimum value of Re for points on this curve is
called the minimum critical Reynolds number. The disturbances corresponding to
points in the «,Re-plane with Reynolds numbers below the critical value will be

damped.



The procedure used hereln to find the critical Reynolds number consisted in
holding Re constant and plotting the imaginary part c4 of the established
eigenvalues against o. The values of a for which ¢4 = 0 could be read from
such a graph establishing points on the neutral curve. For those values of Re
below the critical Reynolds number, the plot of cy against o would not give
any c¢4 = 0. However, after the critical Reynolds number had been bracketed, o
was held constant, and successive linear interpolations led to the critical
Reynolds number. Other points on the neutral curve were obtalned by plotting
cy @against elther « or Re and holding the other constant, depending on
which choice proved to be more convenient. Although thils procedure is straight-
forward and easy to apply, 1t is an indirect way to establish points on the
neutral curve. Thils disadvantage can be attributed to the cholce of the complex
number c¢ as an eigenvalue. The advantage of using ¢ as an eigenvalue will
become apparent after examining the differentisl equations to be integrated.

Fixing o and Re and determining the relation between the four param-
eters a, Re, and (cp,cy) by satisfying the boundary conditions (egs. (11)
to (13)) correspond to the choice of (cy,cy) as the unknown eigenvalue pair and
lead to a system of 24 first-order complex differentiasl equations to be inte-
grated. Since points on the neutral curve (ciy = O) are of primary interest,
another choice is to set ¢4 = 0 and then attempt to find the proper relation
among the parameters «, Re, and ¢, by solving equations (17) to (19) with
¢y =0 and Acy = 0. BSetting ci = 0 leads to the solution of six real equa-
tions in five real unknowns. In general, this set of equations will not be con-
sistent unless the parameters o, Re, and cp, are chosen properly. However,
the proper value of these parameters is the information being sought. Since the
value of ¢4 has been specified, it is no longer permissible to fix both
o and Re, and the variation of one of these parameters has to be allowed for
in order to provide a consistent set of six real equations in glx real unknowns.
However, the introduction of this additional unknown requires the integration
of an additional set of six first-order complex differential equations.

Hence, the choice of <°r:ci) as the unknown eigenvalue palr emong the pa-
rameters a, Re, and (cr,ci) leads to the fewest number of differential equa-
tions to be integrated. This certalnly justiflies the choice of ¢ as an eigen-
value for the case when the differential equations are solved using complex
arithmetic. If the system of differential equations 1s written in real form,
the number of equations to be integrated adds up to 84. However, 72 of these
equations involved partial derivatlives with respect to the starting values and
the eigenvalue c¢. The number of equations to be integrated can be reduced if
use is made of the property that the solutions of equations (1) and (2) are
analytic functions of 7 and depend analytically on the parsmeters a, Re,
and ec¢. This means that the information provided by the integration of the 72
real equations given by equations (20) to (28) can be obtained by the integra-
tion of only 36 real equatlions and the use of the Cauchy-Riemann relations, thus
giving a total of 48 real equations to be integrated. For example, the rate of
change of @ with respect to ¢y 1s given in terms of derivaetives with respect
to c, by relations of the form: Ogp4/dcy = O¢,/dc, and 3./ dcy = -dpi/dc,.
Ingisting that Acy = 0 would amount to rejecting the informetion furnished by
the Cauchy~Rlemann relations.



Another justification for the choice of (cr,ci) as the unknown elgenvalue
palr, thereby allowing c4 +to take on nonzero values, 1s that this choice may
lead to a solution of the eigenvalue problem, whereas setting cy = 0 at the
outset may eliminate any solutions. For example, the eigenvalue problem in the
case of plane Couette flow has no solution for ¢y = O.

ENERGY BATANCE OF DISTURBANCE MOTION

After the elgenvalue problem has been solved and the eigenfunctions have
been determined, the energy balance of the disturbance motion can be computed.

The time rate of increase of the disturbance kinetic energy per unit of
volume of & fluid particle that moves with the basic flow is

2[2_ ('ii2 + Fz)jl = (ai_ +U %)’:g. (ﬁz + ?2)} (z8)

DT

An equation governing the time rate of lncrease of the kinetic energy can
be obtained by the same technique as used in reference 8 for ordinary boundary
layers, that is, by multiplying equation (B6) by U and equation (B7) by ¥,
adding these equations, and using equation (BS) to simplify. This procedure
yields

2 2 s s
2 @ ] - o - () ¢ e

-~ N\
- pv(a}\: _ 5;) + pv[aa; %) - % (E'C)] (39)

where Z = (Bg/ax) - (3u/dy).

Of course, all disturbance quantities are taken to be real in the energy
balance equation (39). The terms in this equation are to be integrated with
respect to y from y =0 to y =o and with respect to x over a wavelength
A of the disturbance in order to obtain the growth of kinetic energy per unit
of time depth and area. After integration the second and last terms on the right
side of equation (39) vanish since W and ¥ vanish for y=0 and y =
and have the period N with respect to x. The equation governing the time rate
of increase of kinetic energy of the disturbance motion is

X oo X =]
2
D o (2 | ~2y| ~~ dU e OF _ oY
= dyl= + =p dx dy (- - + t - -
D}_/ / dx y[z "+ v ):I / / Y[uv 7y * &hu V(ZSE B_y)J
x=0 Yy=0 x=0 Yy=0

(40)
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The first term in the integrand of the right side of equation (40) gives the
rate at which the basic flow, in virtue of its shearing motion, is working
against the Reynolds stresses arising from the disturbance, the last term repre-
sents the dissipation of the disturbance motion, and the second term represents
the work done by the buoyancy force.

The reference quantities introduced in appendix B are used to transform
equation (40) to the following dimensionless form:

where

A 00
~2 ~2
KE = dt anft p 2+ VvV (42)
2 U*Z

£=0 =0

The disturbance quantities in the integrand on the right side of equa-
tion (41) are given by the following relations:

% = ﬁe{cp' (n) exp Ha(t - CT)]} (43)
U
i* = ﬂe{-icw(n) exp [la(t - CT)]} (44)
U

% = ﬁe{s(n) exp [ioo(g - c*r)]} (45)

where Re denotes the real part of the complex quantity.

The integrals appearing in equation (41) are evaluated through substitution
of equations (43) to (45) followed by integration with respect to E. Tt is
found that, for neutral disturbances,

- / an(e.e; ~ @i, )F ———/ an(s o! + 8,0})
0

- a% / dn [(achr - 1B + (aBp, - cpg)z} (48)
0

The followlng designations are used to identify the integrands in equation (46):

A

D xw
Dt

11



e, = —(cp;,cpi - @;chr)F" (47)

Re
e, = —2;-(5 ' 4 s.0L) (48)
B 7 aRe Pr 194
- i’ 2 — oV 2 2 - 1n\2
&) = - IRe [(ou o, = O + (ao, cpi)] (49)

For neutral disturbances the energy balance gives

o] 00 0
an e, + f an e, + / an ey = O (50)
-%T Re * & B 5 D

The satisfaction of equation (50) provides a check on the solution of the eigen-
value problem.

BASIC VELOCITY AWD TEMPERATURE PROFILES FOR WATER

The Pr = 0.733 wvelocity and temperature profiles are tabulated in refer-
ence 9. However, for the case Pr = 8.7 results were not available. In order
to obtain the Pr = 6.7 wvelocity and temperature profiles, the free-convection
boundary velue problem was solved by treating it as an initial value problem as
described 1n the INTRODUCTION. However, in this case there is no eigenvalue in
the equations, rather the proper starting values have to be determined in order
to satisfy conditions at infinity. The boundary value problem as given in refer-
ence 9 consists of solving

Fo4+ 3FFY - 2(F1)2 £ H = 0 (51)
H" + 3PrFH!' = O (52)
subject to the boundary conditions
F(0) = ¥'(0) =0 H(O) = 1 (53)
F'(2) = H(w) = 0 (54)

The tabulation of the Pr = 6.7 wvelocity profile is given in table I and is
shown in figure 1 along with the Pr = 0.733 profile.

With the velocity and temperature profiles for both air and water available,
the stability of these two free-convection boundary-layer flows can be investi-
gated.

RESULTS AND DISCUSSION

Stabllity calculations were carried out for the free convection of air

1z



(Pr = 0.733) and water (Pr = 6.7) with and without temperature fluctustions.

Stability Results for Air Without Temperature Fluctuations

Neglecting temperature fluctuatlions amounts to solving the ordinary
boundary-layer stability problem with the prescribed free-convectlion velocity
profile inserted in the Orr-Sommerfeld equation, which 1s equation (1) with s!
set equal to zero.

The results of the present method can be compared with the calculated re-
sults of reference 5 for the Pr = 0.733 velocity profile. TFigure 2 shows the
neutral curve drawn in the o,Re-plane calculated by the present method and also
shows some of the neutral points calculated in reference 5. Also shown in this
figure 1s the point at which a finite disturbance was observed at Re = 400 and
a = 0.387 (ref. 10). The present method gives & minimum critical Reynolds num-
ber of 105 at a = 0.4. This value compares well with the value of 103 cslcu-
lated in reference 5. The lowest value of Re calculated in reference 2 for
this case was Re = 478 at o = 2.54. The values obtalned from references 5,
10, and 2, respectively, were all converted to the values quoted, which corre-
spond to the cholce of reference quantitlies used herein.

In figure 3(a) the eigenfunctions Py Py P, and wi are shown for the
minimum eritical Reynolds number of 105 at o = 0.4 with ¢, = 0.1513. Also
shown in this figure are the locations of the critical layers. The qualitative
agreement between these curves and the curves given In reference 5 for this case
1s good.

The distribution of the energy transfer functions throughout the boundary
layer is also presented in figure 3(b), where the location of the critical
layers 1s also shown. As 1is the case for ordinary boundary layers, most of the
energy transfer from the baslc flow by the Reynolds stress takes place at a
critical layer. Of course, for ordinary boundary-layer veloclty profiles there
is only one critical layer. For the free-convection velocity profile, the outer
critical layer appears to be more significant than the inner critical layer. As
can be seen from figure 3(b), the dissipation is greatest near the plate. Of
course, for neutral oscillations the net area under the two curves should add up
to zero. Integration by Simpson's rule verified this for this case and for all
cases to be discussed subsequently.

Stability Results for Water Without Temperature Fluctuatlons

The results for this case are qualitatively the same as for the previous
case. IFigure 4 shows the neutral curve drawn in the a,Re-plane calculated by
the present method and also shows the points at which finite disturbances were
observed in reference 1. These experimental points were obtained from figure 8
of reference 1. As can be seen from flgure 4, all the experimental points lie
within the region of amplificetion as obtained by the present method. The ex-
perimental points represent natural finite disturbances, which were observed
without the use of some device to introduce controlled disturbances in order to

13



provoke the onset of turbulence. The lowest value of Re calculated in refer-
ence 1 for this case was Re = 5040 at o = 1.5,

In figure 5(a) the eigenfunctions Ppr P35 ¢y, and @} are shown for the
minimum critical Reynolds number of 385 at o = 0.4125 with ¢, = 0.0800, and
the distribution of energy transfer throughout the boundary layer is shown in
figure 5(b). For the case of no temperature fluctuations, the plots of the
elgenfunctions and the distribution of energy are quite similar for air and
water.

Stability Results for Air With Temperature Fluctuatlons

In reference 1, it 1s indicated that for large values of aRe the tempera-~
ture fluctuations can be neglected for the purpose of solving the elgenvalue
problem. Of course, "large" 1s a relative term. For computational purposes, a
large Reynolds number means that the asymptotlic method may be spplicable. In
another sense, the statement that the Reynolds number is not too large can mean
that the direct numerical method 1s applicable. Of course, the regions of eppli-
cabllity of these two methods could overlap. Since no numerical difficulties
were belng encountered in the stebllity calculations with no temperature fluctu-~
ations, it was decided that the Reynolds number was not too large. However, the
task remained of determining whether or not the Reynolds number was large enough
to neglect temperature fluctuations. For this reason, it was decided to examine
the effects of temperature fluctuations.

Figure 6 shows the neutral curve drawn in the a,Re-plane for this case.
It 18 seen that the neutral curve develops a hump for small values of o and Re
and the minimum critical Reynolds number is lowered. The calculated point
clogest to the minimum critical point is st Re = 64, o = 0.15 with
c., = 0.2692. Also shown in this figure is the neutral curve for no temperature
fluctuations. If a path along the neutral curve for the case with temperature
fluctuations 1s followed, proceeding to lower values of « below 0.15, it is
seen that c, increases continually until, at Re equal to about 70, the phase
veloclty of the disturbance wave 1s greater than the maximum velocity of the
basic flow (see fig. 1). Consequently, there are no critical layers for values
of o less than about 0.13. This result 1s impossible for ordinary boundary-
layer flows for which the Orr-Sommerfeld equation is applicable (see ref. 11).

It is of interest to examine the eigenfunctions and energy distribution,
while proceeding along the neutral curve to lower values of o with ¢, in-
creasing. Figures 7(a), 8(a), and 9(a) show the eigenfunctions, and fig-
ures 7(b), 8(b), and 9(b) show the energy distributions for a = 0.45, 0.15,
and 0.04, respectively.

Examinetion of figure 7(a) shows that the plots of the veloclty eigen-
functions with temperature fluctuations resemble the plots of the velocity eigen-
functions for no temperature fluctuastions (fig. 3(a)). Also shown in figure 7(a)
are the temperature elgenfunctions. As the values of a become smaller, the
plots of the veloclty eigenfunctions change thelr shape, and the curves tend to
oscillate less than at higher values of o (see figs. 7(a), 8(a), and 9(a)).
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Examinetion of the energy distributions for o = 0.45 (fig. 7(b)) shows
that the outer critical layer is significant in that the peak of the Reynolds
stress-term curve is located near it, as is the case without temperature fluctu-
ations. It can be seen that the energy distribution is qualitatively the same
as for no temperature fluctuations, except that the temperature fluctuation term
is reinforcing the Reynolds stress term.

When the two critical layers are almost colncident at o = 0.15, it is seen
in figure 8(b) that the critical layers have no correlation with the energy peak
but the buoyancy term is giving a positive contribution as in the previous case.
Note that in this case the Reynolds stress term is not adding energy to the dis-
turbance flow, but is actually subtracting energy from it. When the critical
layer has completely disappeared as in figure 9(b), it is seen that the buoyancy
term 1s sti111 adding energy to the disturbance flow, and again the Reynolds
stress term is subtracting.

From the previous results 1t appears that the neglect of tempersture fluctu-
ations for the purpose of solving the eigenvalue problem can be Justified in the
vieinity of o = 0.35 to 0.55, where the eigenvalues for the case without tem-
perature fluctuations are close to the eigenvalues for this case. However, as
can be seen from figure 7(a), the temperature fluctuations are not negligible
even in this range of «a.

For values of a smaller than o = 0.35, the buoyancy term in the energy
balance is significant in that i1t is the only term that is giving a positive
contribution to the energy of the disturbance motion. For o = 0.15 and 0.04
it can be seen that the Reynolds stress term is actually extracting energy. It
appears that the introduction of temperature fluctuations introduces & new mode
of instability. This new mode 1s characterized by the buoyancy force term in
the energy balance assuming a dominant role. The buoyancy force term 1s inde-
pendent of any property of the basic flow velocity profile and i1s proportional
to the gravitational acceleration.

The presence of buoyancy effects allows the phase velocity of the disturb-
ance wave to be greater than the maximum velocity of the basic flow. TIn other
problems of hydrodynemic stability where the energy supply to the disturbance is
proportional to the gravitational force, the phase velocity is greater than the
maximum velocity of the basic flow. TIn fact, in reference 12 it is shown, for
small wave numbers, that the phase velocity is equal to twice the maximum veloc-
ity for leminar flow down an inclined plane.

Stability Results for Water With Temperature Fluctuations

The amount of information obtained for this case is significantly less than
for the previous case of air with temperature fluctuations, because numerical
difficulties were encountered for large values of o and Re. Figure 10 shows
the neutral curve drawn in the a,Re-plane. All the points on this curve repre-
sent eigenvalues which have the property that the phase velocity of the disturb-
ance wave 1s greater than the maximum velocity of the basic flow. For alr
(fig. 6) this property was obtained only for o < 0.13. Also shown in figure 10
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is the neutral curve for water without temperature fluctuations. It was diffi-
cult to trace the curve with temperature fluctuations for higher values of «a
than shown, because the values of the eigenfunctlons at the edge of the boundary
layer changed markedly with each run even though the eigenvalues and starting
values were only changing in the elghth decimal place. However, even though the
numerical method cannot produce the eigenfunctions, the eigenvalues so cbtailned
can be accepted as belng reliable (see ref. 7). The point at o = 0.75 and

Re = 385 in figure 10 is one where eigenvalues, but not the eigenfunctions, can
be obtained. This point is on a neutral curve with phase velocity c,. = 0.1241,
which 1s less than the maximum velocity in the basic flow (see fig. 1).

The eigenfunctions for Re = 34 at o = 0.45 with c, = 0.1556 are shown
in figure 11(a), and the energy distribution for this case is shown in fig-
ure 11(b). It can be seen that the two cases, air and water, with temperature
fluctuations are qualitstively the same in that the buoyancy term is providing
most of the energy input into the disturbance motion when the phase velocity is
greater than the maximum velocity in the boundary layer.

CONCLUDING REMARKS

The direct numerlcal method gives a minimum critical Reynolds number lower
than the Reynolds number at which finite dilsturbances were observed experimen-
tally, whereas calculations based on asymptotic techniques yield & minimum
critical Reynolds number higher than the Reynolds number at which finite dis-
turbances were observed. However, the direct method is not universally appli-
cable to all problems for all ranges of the parameters, especially when the
Reynolds number is large. Generally, the method should give results in the
lower left corner of the a,Re-plane where the minimum critical Reynolds number
is usually found.

By referring to the results of experiments with natural disturbances, that
1s, experiments conducted without the use of controlled disturbances to provoke
the onset of turbulence, it can be concluded that the minimum critical Reynolds
nurber calculated herein for the two cases without temperature fluctuations pro-
vides a lower bound to the Reynolds number at which finite disturbances were ob-
served. However, inclusion of temperature fluctuations iIndicated that this mini-
mum critical Reynolds number is not the least lower bound. Rather, there is a
lower minimum critical Reynolds number at small values of wave number ao. This
instability, for which the phase veloclty of the disturbance wave is greater than
the maximum velocity of the basic flow in the boundary layer, has not been re-
ported in the accounts of natural transition experiments.

The existence of temperature fluctuations provides a new mechanism of
energy transfer to the kinetic energy of the disturbance motion. This amount of
energy is a significant contribution to the energy balance in that, for all
cases calculated, it was always positive, that is, destabilizing.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, September 19, 1963
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APPENDIX A

SYMBOLS
& @™t (0)
b s' (0)
c Phase velocity
cP speciflec heat at constant pressure
ep buoyancy
ep dissipation
€Re Reynolds stress
F stream functlon, dimensionless
Fr Froude number
er Grashof number based on x, gB* ATXS/VE
g gravitational accelerastion
H temperature dimensionless
i imaginary unit
KE defined in eq. (42)
k coefficient of heat conductivity
P pressure of basic flow
Pr Prandtl number
D pressure
Re Reynolds number
fe real part
s temperature amplitude function, dimensionless
T temperature, basic flow
AT Tw - T,



TW wall temperature

Too ambient temperature

t temperature

U velocity parallel to plate, basic flow

u* reference velocity parallel to plate

u velocity parallel to plate

v velocity normal to plate, basic flow

v velocity normal to plate

X distance from leading edge of plate

v normal distance from plate

o wave number

g* coefficlent of volumetric expansion

o] reference length, w/éx/(GrX)l/4

n normal distance from plate, dimensionless
e edge of boundary layer

A wavelength, 2n/a, dimensionless

I coefficient of viscosity

v kinematic viscoslity

3 distance from leading edge of plate, dimenslonless

o] density

T time, dimensionless

) stream function amplitude, dimensionless

¥ stream function, dimensionless

Subscripts:

a,b,c denotes differentiation with respect to quantity
i refers to imaginary part
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max

r

maximum

refers to real part

Superscripts:

~

disturbance quantity
dimensional quantity

differentiation with respect to

1
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APPENDIX B

DERIVATION OF STABILITY EQUATTONS

The governing equations for a parallel basic flow plus a disturbance as
given in reference 1 are as follows:

ou , ov _

o~ + Sy 0 (B1)
ou du ou _ _ 1 9p N LT
= +u = + v 555 + W+ g (b - t,) (B2)

o) <JUN v (B3)

ot ot ot _ k
S? +u SE.+ v 5 = EE;.VZt (B4)
where
£ o 8%
dx® oy

The basic steady-state flow is the free-convection flow about a vertical heated
plate. In the derivation of the governing equations the variation of the density
has been neglected except in the gravity term where the density was taken to de-
pend linearly on the temperature. In equations (Bl) to (B4) the density, where
it appears, is taken to be a constant. In accordance with the parallel-flow
assumption, the basic flow can be described by U = U(y), V=0, P = P(y), and

T = T(y). Superimposed upon the basic flow is & two-dimensional disturbance.

The disturbance equations are obtained by substituting u = U + E, v =7,

p =P+ S, and t =T+ % in the previous equations, subtracting out the basic
flow, and neglecting products of disturbance quantities and thelr derivatives.

The disturbance equations are

U L dF _
5§'+ 55 " 0 (B5)
O, O L U 1L P, o
a?JFUFXJFVS.BF_ 5&+vVu+gB‘b (B6)
F Ly 1B, o (B7)
37 o dy
ot ; yot Ly al . k FF (88)
d7 3x dy  eey

20



The disturbance velocities can be obtained from a stream function

V(x,3,7) = 0(y) exp flalx - o1)] (89)
from which
q = g‘g = T (y) exp [18(x - o7)] (B10)
¥--% . mwy) 1E(x - &)
= - 5= = a®(y) exp [la(x - et (B11)

As can be seen from equation (B9), the disturbance is taken to be periodic
in the distance x along the plate. The positive quantity « 18 the wave num-
ber of a disturbance wave, and ¢T,, the real part of €, is the velocity of
propagation of the wave. The imaginary part of ¢ will determine whether the
disturbance will grow (G35 > O) or decay (€3 < 0) in time. The temperature dis-
turbance is also periodic in the distance x along the plate and may be ex-
pressed as

t(x,5,7) = 3(y) exp fa(x - o7)] (B12)

It 1s convenient to represent the disturbance gquantilties in complex form in order
to satisfy the phase relations imposed by equations (B5) to (B8). However,
physical significance is to be attached only to the real part of disturbance
quantities.

Dimensionless variables are introduced by choosing reference quantities in
conformity with those used in calculating the basic flow as follows:

Length:
B =
(6r,)
Veloeity:
2v(CGr )1/2
= U*
X
Temperature:
T -T =AT
w 00
where
*
Gr, = gk ATXS
X Vg
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The following dimensionless variables are used to transform equations (BS) to
(B8) into the dimensionless form:

x = t8 (B13)

vo= 10 (B14)

T = %2 (B15)
U=FU* (B18)

T - T, = HAT (B17)
9 = @3U" (B18)

5 = s AT (B19)

T = cU" (B20)

T = % (B21)

In terms of the new dimensionless variables, the stability equations are obtained
by substitution of equations (B10) and (Bll) into equations (B5) to (BS); the
result Is

. X
(F' - C)((P” - C(,ZCP) - F"g = - 1 (Cp"" - ZG,ZCP" + CL4:(P) - M gt (BZZ)
aRe oFr
(F' - c)s - OB = - —=_ (" - aZs) (B23)
aRePr

where the Reynolds number Re 1s defined as_Re = SU*/V = wag(GrX)l/4, the
Froude number is Fr = (U*)Z/gﬁ = 4V£er/g6x2, and the Prandtl number is

Pr = ucp/k. Equations (B22) and (B23) become identical to equations (1) and (2),
respectively, when the substitution Fr/p* AT = Re is made.

Equations (B22) and (B23) differ from the ones given in reference 2 in that
the term s' in equation (B22) is multiplied by F2/ (F;nax)? This difference
is due to the choice of reference quantities in reference 2, which differ from
those of reference 1 used hereinafter. The reference quantities of reference 2

are as follows:

Length:

Fo  /Bx
/1

F’
max (er)

2z



Veloclty:

2y (ar )M/?
X

X
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APPENDIX C

CONDITIONS TO BE SATISFIED BY EXPONENTIALLY
DECAYING SOLUTIONS

The technique used in reference 4 is used to eliminate the arbitrary con-
stants in equations (7) and (8) in order to obtain a set of linear and homogene-
ous relations in the dependent variables of equations (1) and (2) and their de-
rivatives, which are to be satisfied at the edge of the boundary layer.

In order to satisfy the boundary conditions (eq. (4)), it is necessary that

¢y = ¢z = ¢cg = O. Further, in order that the solutions (7) and (8) agree with
the numerical solution of equations (1) and (2), which is obtained by numerical
integration when 0 = N it is necessary that

¢ =c, exp (an ) + cy exp (-an,) + ¢, exp (Bn,) + c, exp (-pn,)

+ eg exp (yn,) + cg exp (-yn,) (c1)

c,a exp (ane) - e, exp (—ane) + c B exp (Bn,) - c,B exp (-Bng)

<
I

+ et exp (yn,) - cgv exp (-vng) (c2)

9" = cof exp (an.) + cpaf exp (-am,) + cz% exp (Bn.) + c,B% exp (-pn,)

Il

2 2
+ egv? exp (yn,) + cgr” exp (-yn ) (c3)

(plll — clas exp (@ne) - CBQ,B exp <—(‘_I,T]e) + (2363 exp (Bne) - 04:63 exp ("Bne)
3 - 3 -
+ e r” exp (rn)) - e v exp ( ) (C4)
(v% = aBY(y% - B®) exp (yn.) (r2 - &) (v? - B%) exp (-yn.)
s = - o e & (cs)
T T
s! = -CS(YZ - o) (Y% - B%) exp (Yne) - CG(YZ - ) (y2 - BB) exp (-Yne) (cs)

where the left sides of equations (Cl) to (C8) are obtained from the numerical
integration of equations (1) and (2) from 7 =0 to 17 = ne. Solution of equa~-
tions (Cl) to (C6) gives the c's. Since cq = ¢z = cg = O, the three determi-
nants that give Cis Caz and Ce must vanish. Hence,
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® 1 1 1 1 1
" -~ B -B Y -
o o2 2 p2 2 o
o ~a® g5 -pd 3 3 -0  (c7)
< o o o _G% - B (E - P (% - B (v2 - BF)
T T
s 0 0 0o -(P-dAEP -8 -(F - B - 8D
1 1 ¢ 1 1 1
@« - @l -B Y -
N o o' gl 2 2
o3 G om g8 /3 e =0 (ce)
o o s o - (v - o®)(v2 - B®) (v? - «®)(+2 - B%)
Y T
0 o s 0 - (v -a®)(+% - B®)  -(+y% - oB)(y2 - B9)
11 1 1 ® 1
a -a B -B o' -¥
o o g2 2 o 2 . (c9)
I R R I 3
65 0 0 o0 < (r? - B (¢® - %)
Y
Equations (C7) to (C9) reduce to
(Yz - cx,z)[cp'” + ap" - BZ(QD’ + ap)] + ‘rzs + as! =0 (c10)
(v? - g%) [ + po" - oB(e' + Bo)] + v%s + ps' = 0 (c11)
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s' + 18 =0 (c12)

Equations (C10) to (C12) are the conditions that the numerical solution must sat-
isfy at the edge of the boundary layer at n = no. It 1s convenient to eliminate
s' from equations (C10) and (Cll) by means of equation (Cl2). This leads to the
gsomewhat simpler conditions that will be employed instead of equations (Cl11)

and (Cl0), respectively, namely,

1 21 " 2 T —
et - a%p +B(cp—oocp)+Y+Bs—O (c13)
e (L 2 LN r =
P+ o B° (o “®)+r+as'o (Cc14)

It is clear that, if equations (C12) to (C14) are satisfied, then so are equa-
tions (C10) and (C11).
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TABLE I.

FOR PRANDTL NUMBER OF 6.7

n

0.
.1250
2500
3750
.5000

.6250
. 7300
.8750
1.0000

1.1250
1.2500
1.3750
1.5000

1.6250
1.7500
1.8750
2.0000

2.1250
2.2500
2.3750
2.5000

2.6250
2.7500
2.8750
3.0000

3.1250
3.2500
3.3750
3.5000

3.6250
3.7500
3.8750
4.0000

4.1250
4.2500
4.3750
4.5000

4.6250
4.7500
4.8750
5.0000

5.1250
5.2500
5.3750
5.5000

5.8250
5.7500
5.8750
6.0000

6.1250
6.2500
6.3750
6.5000

6.6250
6.7500
6.8750
7.0000

7.1250
7.2500
7.3750
7.5000

7.6250
7.7500
7.8750
8.0000

8.1250
8.2500
8.3750
8.5000

.0032
.0118
.0241
.0388

.0548
0715
.0880
L1041

21194
.1338
L1472
-1595

1707
.1810
.1904
.19839

.2066
.2136
.2200
.2257

.2309
2355
2397
.2436

.2470
.2501
.2528
2554

2877
.2597
.2616
2633

.2648
.2661
.2673
.2684

.2694
.2703
.2711
.2718

.2725
2731
.2736
2741

L2745
2749
.2752
.2755

.2758
.2760
2763
2785

.2766
.2768
.2769
2771

2772
2773
2774
2775

.2775
27786
2776
2777

2777
.2778
.2778
.2778

bkl

.0494
.0852
.1095
L1244

.1318
. 1335
L1311
.1259

.1189
.1110
.1026
.0943

.0862
.0786
.0714
.0648

. 0587
.0532
.0481
.0435

.0393
.0355
L0321
.0289

.0281
-.0236
.0213
.0192

L0173
.0156
-0140
. 0127

L0114
.0103
.0083
.0083

.0075
.0068
.0061
. 0055

. 0049
.0044
. 0040
.00386

.0032
. 0029
. 0026
.0023

.0021
.0019
.0017
.0015

.0013
.0012
.0011
.0010

.0002
-0008
. 0007
. 0008

. 0005
.0005
.0004
0004

.0003
.0003
-0002
.0002

Lot

LI N T S N N I |

T

|20 T T N U AN T U RN S S A |

LI S A |

-1

Frr

.0000
. 8684

-.7351

. 6033
L4777

-3628
-2623
.1783
.1118

. 0607

-.0240

.0011
.0174

0271
. 0322
.0342
.0343

. 0332
.0314
.0293
.0271

.0249
.0228
.0208
.0190

.0172
.0157
0142
.0129

L0117
.0106
. 0096
.0086

.0078
.0071
.0064
.0058

.0052
. 0047
. 0042
.0038

.0035
.0031
.0028
.0025

. 0023
.0021
.0019
.00L7

.0015
.0014
.0012
.0011

.0010
.0009
.0008
.0007

.0007
.0006
.0005
.0005

. 0004
.0004
. 0004
.0003

. 0003
.0003
.0002
.0002

1.0000
.8700
L7412
.8162
.4986

.3919
.2989
2212
.1588

.1107
.0751
.0496
. 0319

.0201
.0124
.0075
.0044

.0026
.0015
.0008
.0005

.0003
.0001
. 0001
. 0000

.0000
.0000
0000
. 0000

. 0000
.0000
.0000
.0000

. 0000
.0000
.0000
.0000

-0000
.0000
. 0000
.0000

.0000
.0000
. 0000
. 0000

.0000
.0000
. 0000
.0000

.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000

. 0000
.0000
. 0000
. 0000

. 0000
. 0000
. 0000
. 0000

.0000
.0000
.0000
.0000

- FUNCTIONS F AND H AND DERIVATIVES

H!

-1.0408
-1.0379
-1.0195
-.9752
-.9016

. 8017
. 8841
. 5599
- 4397

. 3320
. 2415
-1696
.1154

.0762
.0490
.0307
.0188

[N I I |

. 0113
. 0087
.0039
.0022

LI I O |

0012
.0007
.0004
.0002

11y

-.0001
-.0001
.0000
. 0000

. 0000
.0000
. 0000
.0000

.0000
.0000
. 0000
.0000

. 0000
.0000
. 0000
.0000

.0000
. 0000
. 0000
. 0000

.0000
. 0000
. 0000
.0000

. 0000
. 0000
. 0000
. 0000

- 0000
.0000
. 0000
. 0000

©. 0000
» 0000
. 0000
+ 0000

. 0000
. 0000
. 0000
. 0000

.0000
. 0000
. 0000
. 0000
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